Системы управления автоматизированные и автоматические системы

1. Информационный процесс — процесс получения, создания, сбора, обработки, накопления, хранения, поиска, распространения и использования информации.

Информационные системы — системы, в которых происходят информационные процессы.

Если поставляемая информация извлекается из какого – либо процесса (объект), а выходная применяется для целенаправленного изменения того же самого объекта, то такую информационную систему называют системой управления.

2. Виды систем управления:

· автоматизированные (человеко-машинные),

· автоматические (технические).

Автоматизированная система — это система, состоящая из персонала и комплекса средств автоматизации его деятельности, реализующая автоматизированную технологию выполнения установленных функций.

Автоматизированная система управления или АСУ — комплекс аппаратных и программных средств, предназначенный для управления различными процессами в рамках технологического процесса, производства, предприятия.

АСУ применяются в различных отраслях промышленности, энергетике, транспорте и т. п.

Термин автоматизированная, в отличие от термина автоматическая подчёркивает сохранение за человеком – оператором некоторых функций, либо наиболее общего, целеполагающего характера, либо неподдающихся автоматизации.

Понятие “ Автоматизированная система управления ” в России стало использоваться в 50-е годы ХХ века. Интенсивное применение таких систем начинается в 1970–1980-е годы. Оно было направлено в основном на облегчение рутинных операций.

Появление АСУ обусловлено необходимостью совершенствования организационной структуры управления предприятием, организацией, учреждением и т.п.

АСУ представляет собой совокупность коллектива людей и комплекса программно-технических средств, т.е. является человеко-машинной системой, базирующейся на экономико-математических методах управления, использовании средств ЭВМ.

Автоматизация базируется на широком использовании средств вычислительной техники (СВТ) и необходимого для них ПО. В качестве технических средств АСУ получили использование многомашинные, многопроцессорные комплексы, образующие с помощью ЭВМ и информационных сетей распределенные системы обработки информации. При реализации АСУ обычно применяются автоматизированные рабочие места и участки.

Решаемые в АСУ задачи делят на задачи, требующие немедленного ответа и допускающие определённую его задержку по времени выполнения.

В основном выделяют следующие режимы работы АСУ: параллельной обработки, квантования временем для пакетной обработки, оперативной обработки, реального времени и телеобработки информации и данных. В режиме квантования временем каждой прикладной программе выделяется квант времени, по окончании которого управление передаётся следующей программе. Увеличение скорости ответа системы пользователю достигается путём оперативной (онлайновой, непосредственной) обработки данных. При сочетании многопрограммного режима работы ЭВМ с квантованием времени и режимом непосредственного доступа образуется режим разделения времени. Режим реального времени предназначен для задач, требующих немедленного ответа. Он характеризуется дистанционной обработкой информации (телеобработкой). Режим телеобработки может использоваться и в других случаях, например, для пакетного режима обработки данных.

Автоматизация позволяет существенно сократить время создания новых образцов техники, продуктов и т.д., а также обслуживания пользователей, значительно повысить уровень их обслуживания, преобразует и видоизменяет отдельные технологические процессы, а порой – все основные традиционно используемые технологии. Хотя изначально автоматизированные системы предназначались для автоматизации сложных производственных технологических процессов, всё же их недаром назвали АСУ. Управление любыми процессами связано с выполнением собственно функций управления, т.е. взаимодействия людей в процессе выполнения каких-либо работ. В этом случае активизируется деятельность административно-управленческого аппарата и совершенствуется документооборот. Важное место в подобных процессах всегда отводилось циркулирующей в организации информации.

АСУ – гибкие интегрированные системы с элементами искусственного интеллекта. Они ориентированы на реализацию безбумажного, безлюдного управления объектом с подстройкой к изменяющимся внешним условиям и ресурсам. Реализация подобных задач строится на применении ЭВМ, объединённых информационной сетью или сетями с другими ЭВМ.

Для функциональных задач, имеющих достаточно формализованные алгоритмы решения (финансово-бухгалтерский учёт, материально-техническое снабжение, кадры и др.), внедрение АСУ позволило значительно улучшить отчётность, контроль прохождения документации, своевременность принятия решений, и во многих случаях это дало значительный экономический эффект.

Следовательно, для успешного функционирования АСУ возникает потребность автоматизации информационных процессов, а значит и создания автоматизированных информационных систем (АИС). Так и было вначале. В результате появились информационные системы, позволяющие в автоматизированном режиме выполнять процессы, связанные с управлением производством и различными видами деятельности, а также с делопроизводством. В России эти процессы начинаются со второй половины XX века.

Затем стало очевидным, что АИС могут использоваться не только для совершенствования управления производственными процессами, но и с целью улучшения качества создаваемой информационной продукции и услуг, повышения качества и оперативности обслуживания пользователей и т.п. Информационные АСУ обладают возможностью представления информации в виде, удобном для последующего использования, обработки в ЭВМ, а также передачи её по каналам связи.

2. Автоматизированные информационные системы Автоматизация информационных процессов, способствуя ликвидации многих рутинных операций, повышая комфортность и одновременно эффективность работы, предоставляя пользователям новые, ранее неведомые, возможности работы с информацией, создаёт и новые проблемы, решение которых может быть осуществлено лишь на базе использования общенаучных методов и новых информационных технологий. На каждой ступени развития общества они отражают присущий ему уровень высоких технологий.

Автоматизированная информационная система (Automated information system, AIS) — это совокупность программных и аппаратных средств, предназначенных для хранения и (или) управления данными и информацией, а также для производства вычислений.

Основная цель АИС – хранение, обеспечение эффективного поиска и передачи информации по соответствующим запросам для наиболее полного удовлетворения информационных запросов большого числа пользователей.

К основным принципам автоматизации информационных процессов относят:окупаемость, надежность, гибкость, безопасность, дружественность, соответствие стандартам.

Окупаемость означает затрату меньших средств, на получение эффективной, надёжной, производительной системы, возможностью быстрого решения поставленных задач. При этом считается, что срок окупаемости системы должен составлять не более 2–5 лет.

Надежность достигается использованием надёжных программных и технических средств, использования современных технологий. Приобретаемые средства должны иметь сертификаты и (или) лицензии.

Гибкость означает легкую адаптацию системы к изменению требований к ней, к вводимым новым функциям. Это обычно достигается созданием модульной системы.

Безопасность означает обеспечение сохранности информации, регламентация работы с системой, использование специального оборудования и шифров.

Дружественность заключается в том, что система должна быть простой, удобной для освоения и использования (меню, подсказки, система исправления ошибок и др.).

Выделяются четыре типа АИС:

1. Охватывающий один процесс (операцию) в одной организации.

2. Объединяющий несколько процессов в одной организации.

3. Обеспечивающий функционирование одного процесса в масштабе нескольких взаимодействующих организаций.

4. Реализующий работу нескольких процессов или систем в масштабе нескольких организаций.

При создании АИС целесообразно максимально унифицировать организуемые системы (подсистемы) для удобства их распространения, модификации, эксплуатации, а также обучения персонала работе с соответствующим ПО. Разработка АИС предполагает выделение процессов, подлежащих автоматизации, изучение их, выявление закономерностей и особенностей (анализ), что способствует определению целей и задач создаваемой системы. Затем осуществляется внедрение необходимых информационных технологий (синтез). Для успешного проведения проектно-организационных работ рекомендуется выявить несколько прототипов проектируемого объекта и устанавливаемых на нём программно-технических средств. На их основе разработать несколько вариантов. Затем из них выбирают альтернативные, из которых наконец – наилучшее решение.

АИС можно представить как комплекс автоматизированных информационных технологий, составляющих информационную систему, предназначенную для информационного обслуживания потребителей. В АИС обычно применяются автоматизированные рабочие места (АРМ) на базе персональных ЭВМ, распределённые базы данных, программные средства, ориентированные на конечного пользователя.

READ  Установка магнитол и камер заднего вида. Подключение камеры в виде карты

Основное назначение автоматизированных информационных систем не просто собрать и сохранить электронные информационные ресурсы, но и обеспечить к ним доступ пользователей. Одной из важнейших особенностей АИС является организация поиска данных в их информационных массивах (базах данных). Поэтому АИС практически являются автоматизированными информационно-поисковыми системами (АИПС),

Автоматизированная информационно-поисковая система — программный продукт, предназначенный для реализации процессов ввода, обработки, хранения, поиска, представления данных т.п.

АИПС бывают фактографическими и документальными.

Фактографические АИПС обычно используют табличные реляционные БД с фиксированной структурой данных (записей).

Документальные АИПС отличаются неопределённостью или переменной структурой данных (документов). Для их разработки обычно применяются оболочки АИС.

Примеры оборудования с числовым программным управлением.

Числовое программное управление (ЧПУ) означает компьютеризованную систему управления, считывающую инструкции специализированного языка программирования (например, G-код) и управляющую приводами металло-, дерево- и пластмасообрабатывающих станков и станочной оснасткой.

Станки, оборудованные числовым программным управлением, называются станками с ЧПУ. Помимо металлорежущих (например, фрезерные или токарные), существует оборудование для резки листовых заготовок, для обработки давлением.

Система ЧПУ производит перевод программ из входного языка в команды управления главным приводом, приводами подач, контроллерами управления узлов станка (включить/выключить охлаждение, например). Для определения необходимой траектории движения рабочего органа (инструмента/заготовки) в соответствии с управляющей программой рассчитывается траектория обработки деталей.

Схема передачи информации:

Процессы, не учитывающие состояние объекта управления и обеспечивающие управление по прямому каналу (от управляющей системы к объекту управления), называются разомкнутыми.

Система, в которой управляющий объект получает информацию о реальном состоянии объекта управления по каналу обратной связи, исходя из которой, производит необходимые управляющие действия по прямому каналу управления, называется замкнутой системой управления или системой с обратной связью

1.1. Принцип обратной связи.

Автоматическая система управления – это соединение отдельных элементов в определенную конфигурацию, обеспечивающую заданные характеристики. В основе ее анализа лежит теория линейных систем, предполагающая наличие причинно-следственных связей между элементами. Поэтому ТП или ТО,подлежащий управлению, может быть представлен в виде блока, изображенного на рис. 1.1.1. Связь между входом и выходом – это, по сути, преобразование одного сигнала (причины) в другой (следствие), причем довольно часто с усилением мощности. В разомкнутой системе управления для получения желаемой реакции объекта обычно используется регулятор или исполнительное устройство, как показано на рис. 1.1.2. В разомкнутой системе обратная связь отсутствует.

В отличиеот разомкнутой, в замкнутой системе производится измерение действительного значения выходного сигнала, которое затем сравнивается с его желаемым значением. Измеренное значение выхода называют сигналом обратной связи. Простейшая замкнутая система управления– система регулирования, поддерживающая желаемое значение выходного сигнала,изображена на рис. 1.1.3.

Замкнутая система стремится поддержать заданное соотношение между двумя переменными путем сравнения функций от этих переменных и использования их разности в качестве управляющего сигнала. Чаще всего разность между заданным значением выходной переменной и ее действительным значением усиливается и используется для воздействия на объект управления, в результате чего эта разность постоянно уменьшается. Принцип обратной связи лежит в основе анализа и синтеза систем управления.

В замкнутой системе производится измерение выходной переменной и его результат в виде сигнала обратной связи сравнивается с эталонным входным сигналом, несущим информацию о заданном значении выходной переменной.

В связи с возрастающей сложностью объектов управления и желанием добиться оптимальных показателей качества, за последнее десятилетие резко повысилась роль автоматического управления. К тому же во многих случаях возникает необходимость учитывать взаимное влияние выходных переменных друг на друга, что неизбежно отражается на структуре системы. Конфигурация такой многомерной системы управления приведена на рис. 1.1.4.

Типичным примером разомкнутой системы управления может служить кухонный электротостер.

В качестве примера замкнутой системы можно рассматривать ситуацию, когда водитель автомобиля при движении по дороге наблюдает за его положением и осуществляет необходимые воздействия на органы управления (рулевое колесо и педали).

Замкнутая система по своим характеристикам будет превосходить разомкнутую, т. к. она всегда будет стремиться свести ошибку к минимуму. Если элементы системы обладают стабильными характеристиками, то в замкнутой системе можно добиться точности поддержания заданного значения скорость и, в 100 раз превышающей аналогичный показатель разомкнутой системы.

Управление с использованием обратной связи – это неоспоримый факт нашей повседневной жизни. Управлять автомобилем очень приятно, когда машина мгновенно реагирует на действия водителя. Многие автомобили с этой целью оснащены гидроусилителями руля и тормозов. Простая блок-схема системы управления движением автомобиля изображена на рис. 1.1.5 а. Желаемое направление движения сравнивается с результатом измерения действительного направления и в итоге образуется ошибка, как показано на рис. 1.1.5 б. Информация о действительном направлении поставляется за счет визуальной и тактильной (телодвижение) обратной связи. Дополнительная обратная связь образуется ощущением рулевого колеса руками водителя (датчиком). На рис. 1.1.5. визображена типичная реакция автомобиля на действия водителя.

Действительное направление
движения

Рис. 1.1.5 в

Системы управления функционируют по замкнутому циклу, как показано на рис. 1.1.6. Если датчик является точным, то измеренное значение выхода системы равно его действительному значению. Разность между желаемым и действительным значениями выходной переменной, т. е. ошибка, поступает на управляющее устройство (например, усилитель). С его выхода сигнал поступает на исполнительное устройство, которое воздействует на объект управления таким образом, чтобы уменьшить ошибку. Например, если корабль пытается отклониться от курса вправо, руль приводится в движение так, чтобы повернуть корабль влево. Система на рис. 1.1.6 – это система с отрицательной обратной связью, т. к. выходной сигнал вычитается из входного, а разность подается на вход усилителя.

На рис. 1.1.7 изображена замкнутая система ручного управления уровнем жидкости в баке. Входом является заданное значение уровня жидкости, который оператор обязан поддерживать (это значение он держит в памяти). В качестве усилителя выступает сам оператор, а датчиком являются его глаза. Оператор сравнивает действительное значение уровня с желаемым и открывает или закрывает вентиль, изменяя чем самым в нужном направлении отток жидкости.

Многие другие хорошо знакомые системы управления состоят из тех же основных элементов, которые показаны на рис. 1.1.6. Так, бытовой холодильник имеет устройство задания желаемой температуры, термометрический датчик, определяющий действительное значение температуры и величину ошибки, и компрессор, играющий роль усилителя мощности. Другими примерами могут служить духовой шкаф, электропечь, водяной нагреватель. В промышленности повсеместно используются системы управления скоростью, температурой, давлением, положением, толщиной, составом вещества, качеством изделий.

На современном этапе автоматизацию можно определить как технологию, использующую запрограммированные команды, воздействующие на некоторый объект или процесс, так и обратную связь, с помощью которой определяется, правильно ли исполнены эти команды. Автоматизация часто применяется к процессам, в управлении которыми ранее участвовал человек. После автоматизации возможно полностью автоматическое управление без участия человека. Фактически, большинство автоматических систем управления способны выполнять свои функции с большей точностью и намного быстрее, чем это было при ручном управлении. Автоматизированные системы управления предполагают вмешательство человека. Например, многие работы на линии сборки автомобилей требуют совместных действий человека-оператора и интеллектуального робота.

READ  Камера заднего вида с 4 pin разъемом

Робот – это управляемая компьютером машина, функционирующая фактически на тех же принципах, которые используются в системах автоматизации. Робототехнику можно определить как отдельную ветвь автоматизации, в которой проектируются автоматические машины (т. е. роботы), призванные заменить труд человека. Поэтому роботы обладают определенными характеристиками, присущими человеку. Примером может служить механический манипулятор, воспроизводящий движения человеческой руки и кисти. Отметим, что некоторые задачи автоматическая машина выполняет лучше человека, тогда как с другими лучше справляется человек.

На рис. 1.1.8 показанробот типа «Искусственная рука», являющийся совместной разработкой Центра технического конструирования Университета штата Юта и Лаборатории искусственного интеллекта Массачусетского технологического института (США). Рука имеет 18 степеней свободы, управляется пятью микропроцессорами Motorola 6800, приводится в действие З6-ю прецизионными электропневматическими исполнительными механизмами через особо прочные полимерные сухожилия. Рука имеет 4 пальца и оснащена тактильными датчиками усилия.

Системы несвязанного регулирования.

Структурная схема системы представлена на рис. 1.32. Выведем передаточную функцию эквивалентного объекта в одноконтурной АСР с регулятором R1. Как видно из рис. 1.33, а, такой объект состоит из основного канала регулирования и связанной с ним параллельно сложной системы, включающей второй замкнутый контур регулирования и два перекрестных канала объекта.

Рис. 1.33. Преобразование системы регулирования двух координат к эквивалентным одноконтурным АСР: эквивалентный объект для первого регулятора; б– эквивалентный объект для второго регулятора

Рис. 1.34. Амплитудно-частотные характеристики одноконтурных АСР при отсутствии перекрестных связей в объекте

Передаточная функция эквивалентного объекта имеет вид:

Второе слагаемое в правой части уравнения (1.36) отражает влияние второго контура регулирования на рассматриваемую систему и по существу является корректирующей поправкой к передаточной функции прямого канала.

Различают автоматические и автоматизированные системы управления. В отличии от автоматических систем, в которых управление осуществляется без участия человека, в автоматизированных системах часть функций управления выполняет человеком, другая часть – автоматическими устройствами. В автоматизированных системах управления (АСУ) с помощью вычислительной техники сбора, анализа, регистрации информации, а также ее преобразование для выполнения отдельных операций принятия решений. Для реализации этих функций используются экономико-математические методы и модели, позволяющие получить оптимальное или близкое к оптимальному решение. Таким образом, АСУ – это человеко-машинная система, использующая экономико-математические методы, средства электронно-вычислительной техники для отыскания и реализации наиболее эффективного управления

Наиболее распространенными признаками классификации АСУ являются тип объекта управления, выполняемые функции и назначение, выходные результаты и др.

По типу объекта управления различают АСУ предприятием, объединением, отраслью, народным хозяйством. Можно выделить территориальные АСУ (АСУ городом, АСУ регионом, АСУ республикой).

По назначению принято различать промышленные, оборонные, коммерческие, финансово-экономические и другие АСУ

По выполняемым функциям выделяют административно-организационные АСУ, технологические, интегральные.

По выходным результатам различают информационно-справочные, информационно-советующие и информационно-управляющие АСУ.

По типу производства различают АСУП для непрерывных, дискретных и дискретно-непрерывных производств.

В составе АСУП принято выделять функциональную и обеспечивающую части.

Функциональная часть подразделяется на подсистемы, выполняющие основные функции управления предприятием. Необходимость выделения функциональных подсистем объясняется сложностью управления современным мероприятием. Обеспечивающая часть представляет собой комплекс средств и методов, объединенных в соответствии с их спецификой и обеспечивающих решение задач во всех функциональных подсистемах АСУП. Выделяют организационное, информационное, техническое, математическое и программное, лингвистическое, правовое и эргономическое обеспечение АСУП.

Организационное обеспечение – это совокупность методов и средств технико-экономического анализа системы управления, выбора и постановки задач организационного, организации производства и управления в условиях АСУП.

Информационное обеспечение представляет собой совокупность динамической информационной модели предприятия и средств ее формирования и ведения (поддержание адекватности модели и объекта).

Техническое обеспечение АСУП – это комплекс технических средств, обеспечивающих функционирование АСУП.

Математическое и программное обеспечение представляет собой совокупность алгоритмов и программ, реализующих функциональные и обеспечивающие задачи АСУП.

Лингвистическое обеспечение – это языковые средства (языки программирования, описания объектов и задач управления, общения с ЭВМ и т.д.), используемые на различных этапах создания и функционирования АСУП.

Правовое обеспечение представляет совокупность руководящих материалов и нормативов, регламентирующих порядок разработки, внедрения и функционирования АСУП, статус АСУП в отрасли, функции отдельных звеньев и организаций, порядок формирования и использования информации в системе. Кроме того, правовое обеспечение регламентирует права, обязанности и ответственность персонала АСУП.

Эргономическое обеспечение – это совокупность методов и средств, позволяющих повысить эффективность деятельности человека в АСУП.

Структуры сложных систем управления, как правило, строятся с использованием иерархического и функциональных принципов выделения подсистем.

Первый (нижний) уровень иерархии состоит из множества систем управления отдельными технологическими операциями. Цель управления на этом уровне обычно является выбор и поддержание заданных режимов выполнения технологических операций. Здесь управление сводится к контролю параметров технологических режимов и к воздействию непосредственно на технологическую операцию.

Второй (следующий) уровень иерархии включает системы управления производственными участками и технологическими линиями. Основная цель управления – выбор и поддержание режимов совместного функционирования агрегатов станков и оборудования. На этом уровне производится корректировка параметров каждой операции технологического процесса в зависимости от случайного и вынужденного изменения режимов других.

Совокупность систем упрвления первого и второго уровней будет называться системой упрвления технологическими процессами (СУТП).

Третий уровень иерархии составляют системы управления цехами. Цель управления цехом – организация выпуска заданного количества изделий конкретной номенклатуры с требуемым качеством и наименьшими затратами. Для реализации такой цели в процессе управления необходимо выполнять функции организационно и экономического характера.

Объектом управления на четвертом уровне иерархии является непосредственно предприятие в целом. Цель управления – организация совместного функционирования цехов для выпуска готовой продукции при заданных технико-экономических показателях. Совокупность систем управления третьего и четвертого уровней называют системой управления предприятием (СУП).

Автоматизированная система управления или АСУ– комплекс аппаратных и программных средств, предназначенный для управления различными процессами в рамках технологического процесса, производства, предприятия. АСУ применяются в различных отраслях промышленности, энергетике, транспорте и тому подобное.

Создателем первых АСУ в СССР является доктор экономических наук, профессор, член-корреспондент Национальной академии наук Белоруссии, основоположник научной школы стратегического планирования Николай Иванович Ведута (1913-1998). В 1962-1967гг. в должности директора Центрального научно-исследовательского института технического управления (ЦНИИТУ), являясь также членом коллегии Министерства приборостроения СССР, он руководил внедрением первых в стране автоматизированных систем управления производством на машиностроительных предприятиях. Активно боролся против идеологических PR-акций по внедрению дорогостоящих ЭВМ, вместо создания настоящих АСУ для повышения эффективности управления производством.

Важнейшая задача АСУ– повышение эффективности управления объектом на основе роста производительности труда и совершенствования методов планирования процесса управления.

Цели автоматизации управления

Обобщенной целью автоматизации управления является повышение эффективности использования потенциальных возможностей объекта управления. Таким образом, можно выделить ряд целей:

READ  Штатная камера заднего вида и AHD камеры для автомобиля

В состав АСУ входят следующие виды обеспечений:

Основные классификационные признаки

Основными классификационными признаками, определяющими вид АСУ, являются:

Функции АСУ в общем случае включают в себя следующие элементы (действия):

АСУ различного назначения, примеры их использования.

АСУ современного хлебопекарного предприятия должна комплексно отражать сферы деятельности хлебозавода: складской учет сырья, материальных средств, продукции основного, а также вспомогательного производств хлебозавода, учета качества сырья  (продукции), финансового учета (анализа), налогового (бухгалтерского) учета, планирования производства хлеба и хлебобулочных изделий, финансовых результатов деятельности предприятия хлебопекарной промышленности.

Современная АСУ хлебозавода является многоуровневой, а также иерархической (по функциям управления, информационным моделям, структурам баз данных, архитектуре программного обеспечения для оптимального функционирования хлебозавода).

Комплексная АСУ хлебопекарного предприятия обеспечивает максимальный уровень автоматизации работы пользователей, предоставляет удобные инструменты конфигурирования, а также управления, позволяющие адаптировать АСУ к условиям конкретного предприятия хлебопекарной промышленности.

Использование АСУ позволяет руководству предприятия принимать обоснованные, грамотные решения при производстве хлебобулочных изделий.

Количество контролируемых, а также управляющих параметров современных автоматизированных предприятий хранения и переработки зерна (элеваторах, зернохранилищах, мукомольных заводах, комбикормовых комбинатах) постоянно увеличивается, давно превысив черту, когда оператор может самостоятельно (без применения сложных автоматизированных комплексов для предприятий хранения и переработки зерна) управлять технологическим процессом. В связи с этим, вопрос внедрения комплексной автоматизации зернохранилищ, элеваторов, силосов и других объектов по переработке и хранению зерна является довольно актуальным.

Современные средства АСУ ТП зерноперерабатывающих предприятий позволяют значительно снизить потери при хранении и переработке зерна, сэкономить энергоресурсы зерноперерабатывающих предприятий, элеваторов, минимизировать влияние человеческого фактора, рисков возникновения аварийных ситуаций работы автоматизированных технологических комплексов по хранению и переработке зерна. Последние разработки в области АСУ ТП зерноперерабатывающей отрасли позволяют автоматически прогнозировать процесс самосогревания зерна, надежно, качественно в автоматическом режиме управлять потоками влажного и сухого зерна, процессом сушки, также системой формирования технологических маршрутов в пределах зерноперерабатывающего предприятия.

Видеоресурс «Пример внедрения WMS для автоматизации ответственного хранения на складе».

Система управления складом (англ. Warehouse Management System, аббр. WMS) — информационная система, обеспечивающая автоматизацию управления бизнес-процессами складской работы профильного предприятия.

https://youtube.com/watch?v=3YyQ3Ra_KHE%3Frel%3D0%26fs%3D1%26wmode%3Dtransparent

Видеоресурс «Автоматизированная система управления электротехническим оборудованием электростанций и подстанций (АСУ ЭТО)»

https://youtube.com/watch?v=JAMbALXeKXQ%3Frel%3D0%26fs%3D1%26wmode%3Dtransparent

Вопросы  для  самоконтроля:

9. Уровни АСУ ТП

АСУ ТП строятся по

трехуровневому принципу:

Рис. 24. Три уровня

Автоматизированной Системы Управления Технологическими Процессами.

(sensors), измерительных

устройств, контролирующих управляемые параметры, а также  исполнительных устройств (actuators),

воздействующих на эти параметры процесса, для приведение их в соответствие с

заданием. На этом

уровне осуществляется согласование сигналов датчиков с входами устройства

управления, а вырабатываемых команд с исполнительными устройствами.

Уровень управления оборудованием Programable Logic Controller). ПЛК

получает информацию с контрольно-измерительного оборудования и датчиков о

состоянии технологического процесса и выдает команды управления, в соответствии

с на исполнительные механизмы.

Уровень промышленного сервера, сетевого

оборудования,  уровень операторских и диспетчерских станций. На этом уровне идет контроль хода производства:

обеспечивается связь  с нижними уровнями, хода технилогического

процесса.  Это уровень HMI, SCADA На этом уровне задействован человек, т.е. оператор (диспетчер). н осуществляет

локальный контроль технологического оборудования так называемый

человеко-машинный интерфейс (HMI — Human

Machine Interface). К нему относятся: графические панели, которые устанавливаются локально на пультах управления

и шкафах автоматики. за распределенной системой машин, механизмов и агрегатов применя (Supervisory Control And Data Acqusition — диспетчерское управление

и сбор данных) система. Эта система представляет собой порграммное

обеспечение, которое настраивается и устанавливается на диспетчерских

компьютерах.обеспечивает сбор, архивацию, визуализацию, важнейших данных от ПЛК. При

получении данных система самостоятельно сравнивает их с (уставками) и при отклонении от задания  уведомляет оператора с помощью

тревог позволяя ему предпринять необходимые действия. При этом система записывает все происходящее, включая действия оператора,

обеспечивая контроль действий оператора в случае аварии или другой нештатной

ситуации. Таким образом, обеспечивается персональная

ответственность управляющего оператора.

Автоматизированная система управления технологическим процессом (АСУ ТП) на производстве – это комплексное решение и даже в некотором смысле «пульт управления» предприятием. Долгое время мы оказываем услуги строительства заводов, поэтому можно сказать, знаем все про АСУ. В этом материале поделимся с вами нашим опытом и знаниями.

Любая современная АСУ обеспечивает полный контроль над всеми процессами и гарантирует соблюдение производственных процедур. Однако для решения задач в разных сферах производства применяются различные АСУ.

Автоматизированная система управления бетонными заводами

Автоматизированная система управления бетонным заводом представляет собой программно-аппаратный комплекс. Так, АСУ бетонного завода SmartMix от «ТензоТехСервис» — это управляющий инструмент бетоносмесительной установки, с помощью которого можно полностью контролировать процесс приготовления бетонной смеси и состояние исполнительных механизмов завода.

Для удобства создания и корректировки рецептуры разработано отдельное программное обеспечение SmartMixLab. Программа, помимо работы с рецептами, дает возможность определять очередность подаваемых в смеситель материалов, задавать плотность и учитывать влажность.

Облегчает процесс приема заявок независимое приложение SmartMixDispatcher. При помощи него можно фиксировать данные о заказчике, определять очередность выпуска продукции и объем готовой смеси, а также передавать информацию об обслуживающем транспорте.

Для руководящего состава предприятия создана программа SmartMixReporter. Она посредством системы развернутых отчетов в полном объеме удовлетворяет потребность собственника и директора, например, бетонного завода в объективном отражении производственных результатов.

Контролировать работу бетоносмесительной установки в режиме онлайн позволяет компонент АСУ SmartMixSupervisor. При помощи него можно удаленно и без вмешательства в производственный процесс наблюдать за действиями оператора в специальном приложении.

Автоматизированная система управления асфальто-бетонными заводами

АСУ асфальто-бетонным заводом комплексно управляет всеми технологическими процессами при производстве асфальта. Она имеет много общего с автоматизированной системой управления бетонным заводом, но обладает и отличительными особенностями.

Внедрение АСУ SmartABZ от «ТензоТехСервис» решает важную для асфальто-бетонного завода задачу – расширение в кратчайшие сроки списка оборудования, работающего в автоматическом режиме.

Также здесь применяется интеллектуальная система дозирования SmartDose, которая обеспечивает повышенную точность дозировки. Это снижает величину погрешностей при сохранении наивысшего качества продукции.

Автоматизированная система управления заводами сухих смесей

АСУ заводами сухих строительных смесей синхронизирует работу каждого исполнительного механизма для сокращения времени производства готового продукта и повышения производительности.

АСУ заводом сухих смесей SmartDryMix работает с высокоточными системами дозирования пигментов и добавок и ведет расчет остатка материала в емкостях, что особенно важно при производстве готовых сухих строительных смесей.

Что ж, автоматизированные системы управления в зависимости от сферы производства могут решать различные задачи. Впрочем, их всех объединяет выполнение важнейшей для производственного предприятия функции – повышения производительности при снижении себестоимости продукции.

Остались вопросы? Вы можете обратиться к нашим менеджерам, которые с удовольствием проконсультируют вас по всему модельному ряду.

8 (800) 222-35-76

Оцените статью
Авто-пилот